CROCO – training 2024 PSF Barcelonette

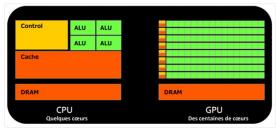
Introduction to CROCO and Parallelization

CROCO – training 2024 - Barcelonette

Available Parallelization options in CROCO
 MPI Concept and techniques
 MPI Basic setup in Croco
 Advanced MPI CPP options in CROCO
 SUMMARY FOR MPI // in CROCO

1.MPI Parallelization

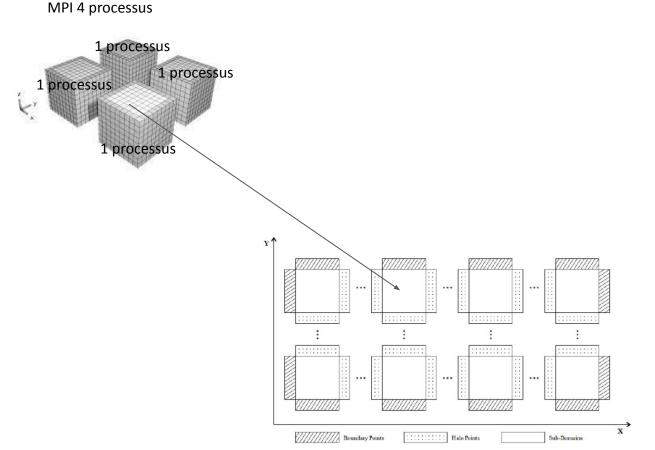
designed for distributed systems, such as clusters of supercomputers where each node has its own memory. Each process in MPI operates in its own memory space, which requires explicit message passing to communicate between them. This makes it ideal for distributed memory environments.


2. OPENMP Parallelization

designed for shared-memory systems, typically multiprocessor or multicore computers with shared memory. The threads created by OpenMP share the same memory and can communicate directly without message passing.

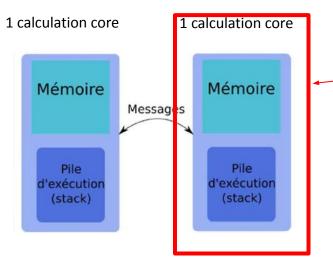
Coming soon...

- no hybrid MPI/OpenMP version
- GPU version under development

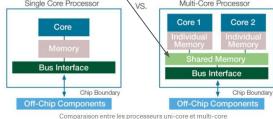


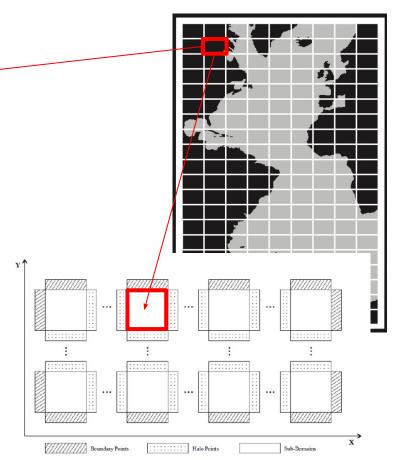
* MPI // is preferred!

Concept and techniques : domain decomposition



MPI 9x20 processus


MPI (Message Passing Interface) : distributed memory



=> compute cores do not have access to a common memory => exchanges via network message

=> in practice, MPI also manages shared memory, but this is transparent to the user.

How to configure MPI in CROCO

STEP1 : edit files

parameter (NPP=1)

1) param.h

Specify tiles number in xi and eta directions => NP_XI, NP_ETA,

maximum of tiles number in ETA direction is preferred

Domain subdivision parameters _____ ____ NPP Maximum allowed number of parallel threads; NSUB_X,NSUB_E Number of SHARED memory subdomains in XI- and ETA-directions: NNODES Total number of MPI processes (nodes): NP_XI,NP_ETA Number of MPI subdomains in XI- and ETA-directions; integer NSUB_X, NSUB_E, NPP #ifdef MPI 4 integer NP_XI, NP_ETA, NNODES parameter (NP_XI=1, NP_ETA=4, NNODES=NP_XI*NP_ETA) parameter (NPP=1) parameter (NSUB_X=1, NSUB_E=1) #elif defined OPENMP parameter (NPP=4) fifdef AUTOTILING common/distrib/NSUB_X, NSUB_E else t parameter (NSUB_X=1, NSUB_E=NPP) # endif param.h #else

Variables in param.h:

- NP_XI : decompostion in XI direction
- NP_ETA: decomposition in ETA direction
- NNODES : number of cores (=``NP_XI*NP_ETA``, except with MPI_NOLAND)
- NPP = 1
- NSUB_X and NSUB_ETA, number of sub-tiles (almost always =1)

```
2) cppdefs.h :
activate MPI => #define MPI
```

STEP2 : compile ./jobcomp

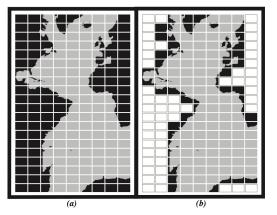
STEP3 : execute - mpirun -n 4./croco (or mpiexec or other) Processor Numbers= NNODES

Online documentation: https://croco-ocean.gitlabpages.inria.fr/croco_doc/model/model.parallel.html

Example 1:

8 cores:

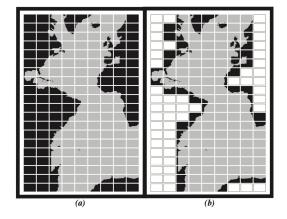
- NP_XI=2, NP_ETA=4, NNODES=8
- NPP=1, NSUB_X=1, NSUB_E=1


MPI CPP OPTIONS in CROCO For writing output files

AVOID CALCULATION IN LAND AREAS (1)

1. Preprocessing In directory CROCO/MPI_NOLAND :

- read README
- compile: edit makefile + make
- edit namelist : grid file name, max number of procs
- execute: /mpp_optimize
- view : ./mpp_plot.py croco_grd.nc benguela-008x005_033
- re-read README ...


		-			Figure	1			
-26		_	В	athym	etry (m	1)		_	_
	28	29		31	32				- 5400
-28	22	23	24		20	27			- 4800 - 4200 - 3600
Latitude	16	17	18	19		21			- 3000
-34	8	9	10	11		13	14	15	- 1800
-36	0	1	2	3	4	5		7	- 1200 - 600
-38	8	10	12	14 Longi	16 itude	18	20	22	0

! namproc
baranananananananan
<pre>! jprocx = maximum number of proc</pre>
&NAMPROC
jprocx=220
! namfile of filename
! NAMELIST /namfile/ cbathy
! cbathy = name of the bathy/mask file(nc)
! covdta = Root for the overdata file name .
! Complete name will be {covdta}.{NP_XI}x{NP_ETA}_{NPP}
&NAMFILE
<pre>cbathy='croco_grd.nc'</pre>
covdta = 'benquela'

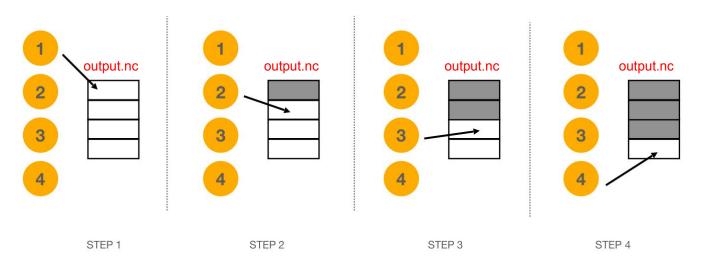
(base) sdb-benshila:MPP_PREP rblod: Number of pts : 1936	
Number of sea pts : 1411	
optimum choice	
> Number of CPUs : NNODES =	33
NP_XI = 8 NP_ETA =	5
Lm = 6 Mm =	9
number of sea CPUs	33
number of land CPUs	7
	3869463869454
minimum overhead 0.1384	
maximum overhead 1.000	
nb of overhead p. < 10 %	0
nb of overhead p. 10 < nb < 30 %	
nb de overhead p 30 < nb < 50 %	
number of integration points	4290
number of additionnal pts	2398
% sup	2.26744175

AVOID CALCULATION IN LAND AREAS (2)

2. Three files to edit in CROCO

-cppdefs.h : CPP OPTION: #define MPI_NOLAND

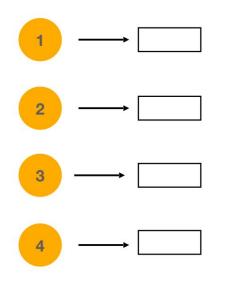
- param.h: insert values for NP_XI, NP_ETA and NPP given by the preprocessing


- MPI_Setup.F: be carefull to the name of grid file (NPP ou NNODES <= NP_XI x NP_ETA)

3. Compile and execute WARNING : grid file as to be called croco_grd.nc (or to be changed in MPI_Setup.F)

Writing MPI 1/4 files: by default

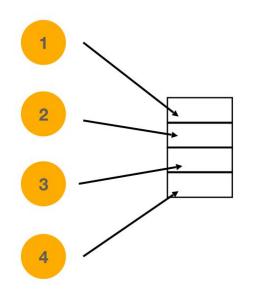
mpirun -np 4 ./croco. (NP_ETA=4)



sequential writing, waiting for each proc to finish before the next one writes Very inefficient !!!!!! Writing MPI files 2/4: parallel files

#define PARALLEL_FILES

mpirun -np 4 ./croco. (NP_ETA=4)


Fast, but many output files

Need to recombine them (cf ncjoin utility)

#define KEY NC4PAR

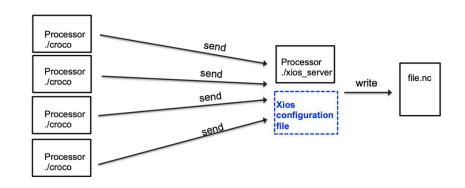
mpirun -np 4 ./croco. (NP_ETA=4)

Fast with a single output file


Requires NetCDF4 library installed with parallel support

Writing MPI 4/4 files: XIOS External server developed at IPSL <u>http://forge.ipsl.jussieu.fr/ioserver</u>

XIOS : attached mode


each croco executable compute and write (like a classical library)

Ergonomy AND efficient parallel writing BUT writing overhead

XIOS : detached mode (server mode)

each croco executable compute and send field to the server

- croco executables for computing only
- only xios server writes output
- Flexibility AND efficient parallel writing AND (almost) no overhead

To go further https://croco-ocean.gitlabpages.inria.fr/croco_doc/tutos/tutos.21.xios.html

		Complexity to implement	Disadvantages	Advantages
1	By default	By default	By default	• Simple to implement, nothing to do
2	Parallel Files	#define PARALLEL_FILES	many output files, need to recombine them	• Simple to implement
3	Parallel writing	#define KEY_NC4_PAR library NETCDF 4 Parallel	installation of NETCDF4 can be tricky	 fast with a single output file
4	XIOS attached mode	#define XIOS, XML file	hard to install XIOS and to use it	 very ergonomic and efficient useful with a big domain
5	XIOS detached mode	#define XIOS, XML file	hard to install XIOS and to use it	 very ergonomic and efficient the best tool with a big domain

\Rightarrow Online documentation:

https://croco-ocean.gitlabpages.inria.fr/croco_doc/model/model.parallel.html

Use MPI on your regional configuration with 4 processus (NP_ETA=4)