
Introduction to CROCO and Parallelization

CROCO – training 2024 - Barcelonette

CROCO – training 2024 PSF Barcelonette

1. Available Parallelization options in CROCO
2.MPI Concept and techniques
3.MPI Basic setup in Croco
4. Advanced MPI CPP options in CROCO
5. SUMMARY FOR MPI // in CROCO

Outline

1.MPI Parallelization
designed for distributed systems, such as clusters of supercomputers where each node
has its own memory. Each process in MPI operates in its own memory space, which
requires explicit message passing to communicate between them. This makes it ideal for
distributed memory environments.

Available paradigms in CROCO

2. OPENMP Parallelization
designed for shared-memory systems, typically multiprocessor or multicore computers
with shared memory. The threads created by OpenMP share the same memory and can
communicate directly without message passing.

- no hybrid MPI/OpenMP version
- GPU version under development

Coming soon…

* MPI // is preferred!

Concept and techniques : domain decomposition

1 processus

MPI 4 processus

1 processus

1 processus

1 processus

MPI 9x20 processus

MPI (Message Passing Interface) : distributed memory

1 calculation core 1 calculation core

=> compute cores do not have access to a common memory
=> exchanges via network message
=> in practice, MPI also manages shared memory, but this is
transparent to the user.

How to configure MPI in CROCO

STEP1 : edit files
1) param.h

Specify tiles number in xi and eta directions
=> NP_XI, NP_ETA,

maximum of tiles number in ETA direction is
preferred

Online documentation:
https://croco-ocean.gitlabpages.inria.fr/croco_doc/model/model.parallel.htmlparam.h

4 Processor Numbers= NNODES

2) cppdefs.h :
activate MPI => #define MPI

STEP2 : compile
./jobcomp

STEP3 : execute
- mpirun -n 4 ./croco
(or mpiexec or other)

https://croco-ocean.gitlabpages.inria.fr/croco_doc/model/model.parallel.html

Example of MPI domains

MPI CPP OPTIONS in CROCO
For writing output files

AVOID CALCULATION IN LAND AREAS (1)

1. Preprocessing
In directory CROCO/MPI_NOLAND :
- read README
- compile: edit makefile + make
- edit namelist : grid file name, max number of procs
- execute: ./mpp_optimize
- view : ./mpp_plot.py croco_grd.nc benguela-008x005_033
- re-read README ...

AVOID CALCULATION IN LAND AREAS (2)

2. Three files to edit in CROCO

-cppdefs.h :

- param.h: insert values for NP_XI, NP_ETA and NPP given by the preprocessing

- MPI_Setup.F: be carefull to the name of grid file
(NPP ou NNODES <= NP_XI x NP_ETA)

3. Compile and execute
WARNING : grid file as to be called croco_grd.nc (or to be changed in MPI_Setup.F)

2. Three files to edit in CROCO

- cppdefs.h : #define MPI_NOLAND

- param.h: insert values for NP_XI, NP_ETA and NPP given by the preprocessing
(NPP <= NP_XI x NP_ETA)

- run as usual (mpirun -np etc)
WARNING : grid file as to be called croco_grd.nc (or to be changed in MPI_Setup.F)

CPP OPTION: #define MPI_NOLAND

Writing MPI 1/4 files: by default

mpirun -np 4 ./croco. (NP_ETA=4)

sequential writing, waiting for each proc to finish before the next one writes
Very inefficient !!!!!!!

output.nc output.nc output.nc output.nc

Writing MPI files 2/4: parallel files

mpirun -np 4 ./croco. (NP_ETA=4)

#define PARALLEL_FILES

Fast, but many output files

Need to recombine them
(cf ncjoin utility)

Writing MPI 3/4 files: parallel writing

mpirun -np 4 ./croco. (NP_ETA=4)

#define KEY NC4PAR

Fast with a single output file

Requires NetCDF4 library
installed with parallel support

Writing MPI 4/4 files: XIOS
External server developed at IPSL http://forge.ipsl.jussieu.fr/ioserver

To go further https://croco-ocean.gitlabpages.inria.fr/croco_doc/tutos/tutos.21.xios.html

XIOS : attached mode
each croco executable compute and write (like a classical
library)

Ergonomy AND efficient parallel writing BUT writing overhead

XIOS : detached mode (server mode)
each croco executable compute and send field to the server

- croco executables for computing only
- only xios server writes output
- Flexibility AND efficient parallel writing AND (almost) no
overhead

http://forge.ipsl.jussieu.fr/ioserver
https://croco-ocean.gitlabpages.inria.fr/croco_doc/tutos/tutos.21.xios.html

Writing MPI - SUMMARY -

Complexity to
implement

Disadvantages Advantages

● Simple to implement, nothing to do1 By default

● Simple to implement 2 Parallel Files

● fast with a single output file3 Parallel writing

By default

#define
PARALLEL_FILES

#define
KEY_NC4_PAR
library NETCDF 4
Parallel

By default

many output
files, need to
recombine
them

installation
of NETCDF4
can be tricky

● very ergonomic and efficient
● useful with a big domain4 XIOS attached mode #define XIOS,

XML file
hard to
install XIOS
and to use it

● very ergonomic and efficient
● the best tool with a big domain5 XIOS detached mode #define XIOS,

XML file
hard to
install XIOS
and to use it

TP MPI

Online documentation:
https://croco-ocean.gitlabpages.inria.fr/croco_doc/model/model.parallel.html

Use MPI on your regional configuration with 4 processus
(NP_ETA=4)

https://croco-ocean.gitlabpages.inria.fr/croco_doc/model/model.parallel.html

