
How to set a configuration on
CROCO model

CROCO – training 2024 - Barcelonette

CROCO – training 2024

Jihene Abdennadher & Moncef Boukthir

CROCO

PRE-PROCESSING
*Grid definition and
bathymetry
* Initial conditions
* Boundary conditions
* Forcing conditions

POST-PROCESSING
Visualisation of model
results (matlab,
python…)

+
Option : Coupled model

Confrontation to data: calibration, validation

HOW TO PROCEED?

STEP 1

STEP 2

STEP 3

CROCOTOOLS
(matlab, python
Tools are in dev)

Croco Philosophy

CROCO is based on a key logic: each term in the model equations corresponds
to one or more keys, named CPP options.

CPP OPTIONS must be specified in the file cppdefs.h which is linked
to the makefile

Each modification in an include file (*.h) requires recompiling the source code.

All values assigned to variables, as well as paths to grid, initialization, boundary,
and forcing files, must be specified in the croco.in file. No source code
recompilation is needed when making changes to this file

GRID

GRID
Orthogonal curvilinear
horizontal coordinates

define CURVGRID
define SPHERICAL

Land/ sea masking

define MASKING

Lm (L-2) , Mm (M-2) and N must
be specified in param.h
* Path of grid file must be
specified in croco.in

L: number of 𝜌 points in 𝜉 direction
M: number of 𝜌 points in 𝜂 direction
N: number of 𝜌 vertical levels

param.h also contains: Parallelisation settings, Tides, Wetting-Drying, Point sources, Floats, Stations specifications

Param.h & cppdefs.h & croco.in

Or #define ANA_GRID

VERTCIAL GRID parameters

hc, theta_s and theta_b values must
be specified in croco.in

hc = 10 m; N=30
𝜃௕ = 0,4; 𝜃௦ = 4,4

Tickness of layers (m)

de
pt

h(
m

)
Distance (km) from the trasect origin

Values of these parameters can be
tested through the matlab script
Test_vgrid.m (see preprocessing and
post-processing course)

CROCO Equations and CPP options

Available advection schemes

TRACERS

2D momentum

3D
momentum

Advice !
Take default CPP options (Written in bold)

If non-boussinesq (#define NBQ))
ifdef NBQ
define W_HADV_TVD
define W_VADV_TVD
endif

define UV_ADV
#define TS_ADV

cppdefs.h

#define SOLVE3D (if #undef SOLVE3D) => Compuation of
the depth integrated equations (Barotropic mode only).

CROCO Equations and CPP options

define UV_COR

define UV_VIS2 // #define UV_VIS4
define TS_DIF2 //#define TS_DIF4

cppdefs.h //cppdefs_dev.h

default is the Density Jacobian formulation
with Cubic Polynomial fit from Shchepetkin et
al. 2003. No cpp to activate in your cppdefs.h
file. Advanced options are in cppdefs_dev.h

Horizontal mixing options cppdefs.h //cppdefs_dev.h

Momentum horizontal mixing options
if implicit dissipation in
UV_HADV_UP3 is
insufficient to handle subgrid-
scale turbulence from strong
shear currents .

define UV_VIS2 or #define UV_VIS4

Horizontal tracers mixing options

Tracers horizontal mixing options

cppdefs.h //cppdefs_dev.h

Horizontal mixing options are
preselected in cppdefs_dev.h for
compliance with advection
options.

define TS_VIS2 //
#define TS_VIS4

Horizontal mixing
options are preselected
in cppdefs_dev.h for
compliance with
advection options.

cppdefs.h

! Don’t change files:
cppdefs_dev.h &
set_global_definitions.h

Vertical mixing options (1/3) cppdefs.h

PRONOSTIC AND NO PRONOSTIC
SCHEMES OF VERTICAL MIXING ARE
AVAILABLE

define GLS_MIXING or # define KPP_MIXING

Vertical mixing options (2/3) cppdefs.h

GLS mixing is based on two
differntial equation one govering
TKE (ଶ and the second
governig (ଶ where s the
turbulent length scale.

Vertical mixing options (2/4) cppdefs.h

No preselected options The user should precise the convenient
cpp option in his cppdefs.h

Available KPP options Available GLS options

Vertical mixing options (3/3) cppdefs.h

• KPP assumes that turbulence in the boundary layer is in equilibrium with surface
and bottom fluxes => true for large scale models,

• for coastal applications, the scheme should respond to local forcing, respond
rapidly to surface and bottom fluxes => GLS-type scheme preferred

• Analytical definition is also possible #define ANA_VMIX….

Needs to be specified in cppdefs.h
define SALINITY
define NONLIN_EOS

density equation

Open Boundaries (OBC’s)

Example : Golfe of Gabes

Bathymetry interpolated at 1/96°.
Depth are in meter.

Two open boundaries : North and East
Two closed boundaries : South and West

If we choose a domain delimited by the red
dashed line, the only open boundary will
be the Eastern one.

In this case we have to activate in our
cppdefs.h
#define OBC_NORTH
#define OBC_EAST

only activate :
#define OBC_EAST

OBC’s CPP OPTIONS
* For non-tidal forcing, the combination of OBC_M2ORLANSKI and OBC_VOLCONS often
provides the best performances in terms of transparency of barotropic flow at the OBC’S
* OBC_M2CHARACT is near as good and provides the best conditions for tidal forcing.

Set your own choice in cppdefs.h if needed …

Activate OBCs from characteristic methods for barotropic velocities (default)OBC_M2CHARACT

Activate radiative OBCs for baroclinic velocities (default)OBC_M3ORLANSKI

Activate radiative OBCs for tracers (default)OBC_TORLANSKI

Preselected options in cppdefs_dev.h

Activate specified OBCs for barotropic velocitiesOBC_M2SPECIFIED

Activate radiative OBCs for barotropic velocitiesOBC_M2ORLANSKI

Enforce mass conservation at open boundaries (with OBC_M2ORLANSKI)OBC_VOLCONS

Activate specified OBCs for baroclinic velocitiesOBC_M3SPECIFIED

Activate specified OBCs for tracersOBC_TSPECIFIED

Activate upwind OBCs for tracersOBC_TUPWIND

For SSH Chapman obc is set by default

Surface forcing options (1)

𝐾𝑀𝑣

𝜕𝑢

𝜕𝑧
=

𝜏௦
௫

𝜌଴
𝑥, 𝑦, 𝑡

Surface (z = boundary conditions

𝜅ௌ௩

𝜕𝑆

𝜕𝑧
=

𝐸 − 𝑃 𝑆

𝜌଴

𝜅்௩

𝜕𝑇

𝜕𝑧
=

𝑄்

𝜌଴𝐶௉
+

1

𝜌଴𝐶௉

𝑑𝑄்

𝑑𝑇
𝑇 − 𝑇௥௘௙

𝐾𝑀𝑣

𝜕𝑣

𝜕𝑧
=

𝜏௦
௬

𝜌଴
𝑥, 𝑦, 𝑡

cppdefs.h

Generate forcing file with croco_pre-
processing tools (matlab //python)
containing forcing variables: wind stress,
heat , fresh water fluxes…

Process to analytic forcing in croco by
activating in your cppdefs.h analytical
options:
define NO_FRCFILE
define ANA_SMFLUX
define ANA_STFLUX..

Use Bulk formulation by activating cpp
options in your cppdefs (see next slide)

Surface forcing options (2) cppdefs.h

Bulk formulation options

Additional functionalities…

Bottom forcing options (2) Croco.in + cppdefs.h

𝐾𝑀𝑣

𝜕𝑢

𝜕𝑧
= 𝜏௕

௫ 𝑥, 𝑦, 𝑡

𝐾𝑀𝑣

𝜕𝑣

𝜕𝑧
= 𝜏௕

௬
𝑥, 𝑦, 𝑡

Bottom conditions for momentum (z =-H)
Needs to be specified in croco.in
Different formulations are available:
• Quadratic friction with log-layer

௢௕

• Quadratic friction with
• Linear friction with

Additional cpp can be activated in
your cppdefs.h

Croco.in

Lateral forcing Croco.in + cppdefs.h

Climaology strategy: Give a netcdf climatological
file containing u,v,T,S, , , on all points of the
given domain. Path should be specified in croco.in

Two ways for forcing on OBC’s

Activate processing 2D/3D data
(climatological or OGCM data..) used
as forcing on OBC’s and nudging
layers

#define CLIMATOLOGY

Activate processing of sea level#define
ZCLIMATOLOGY

Activate processing of 𝑢ത, 𝑣̅#define
M2CLIMATOLOGY

Activate processing of baroclinic
velocities

#define
M3CLIMATOLOGY

Activate processing of tracers#define
TCLIMATOLOGY

Add CPP options in your cppdefs.h

Boundary strategy: Give a netcdf boundary file
containing u,v,T,S, , , on OBC’s. Path should
be specified in croco.in

Useful for inter-annual forcing on high-resolution
domains.

Activate forcing on OBC’s points
strictly

#define BRY_FRC

Activate processing of sea level#define Z_FRC_BRY

Activate processing of 𝑢ത, 𝑣̅#define M2_FRC_BRY

Activate processing of baroclinic
velocities

#define M3_FRC_BRY

Activate processing of tracers#define T_FRC_BRY

Tides forcing Param.h+ cppdefs.h+croco.in
Tides elevations and currents are set on OBC’s

Add CPP options in your cppdefs.h

#define TIDES
#ifdef TIDES
#define SSH_TIDES
#define UV_TIDES
#undef POT_TIDES
#undef TIDES_MAS
#ifnedf UV_TIDES
#define OBC_REDUCED_PHYSICS
#endif
#define TIDERAMP
#endif
#define OBC_M2CHARACT

Indicate the number of tide constituents in
param.h

௧௜ௗ௘ ௧௜ௗ௘ ௧௜ௗ௘ are added at the variables
௖௟௜௠ ௖௟௜௠ ௖௟௜௠ at the open boundaries.

For each tidal constituent, the user should
provide the amplitude and phase of the
elevation, as well as the ellipse parameters
for the barotropic currents. These values
can be obtained from a global tide model
and interpolated onto your grid.

Indicate the path of your tide forcing file in
croco.in

RECOMMANDATIONS

Running

* Barotropic mode H is the maximum depth over your model domain
∆𝑥 grid horizontal resolution in m
g: gravity acceleration

for example for Hmax= 5km and Δx=30km we get Δ𝑡 ≤ 85 s

If NDTFAST=୼௧್೎

୼௧್೟
=60 Δ𝑡௕௖ ≤ 5100 𝑠

Typical CFL values with croco time stepping
algorithm

In the case of UP3 advection scheme (default) with
previous example (Hmax= 5km and Δx=30km)

Then 𝑉௠௔௫ ≤ 0.871
ଷ ଵ଴ర

ହଵ଴଴
= 5.12 𝑚/𝑠: maximum allowed

velocity

* Baroclinic mode

CFL :Courant–Friedrichs–Lewy (CFL) condition

CFL condition for advection scheme : ୼௧್೎

୼௫
𝑉௠௔௫ ≤ 𝛼∗

VERTCIAL GRID – Pressure gradient error pb

Recommendation: smooth the topography using a nonlinear filter and a criterium: r =
Δh / h < 0.2 + choose high-order numerical schemes for advection-diffusion.

Interference of the discretization errors of these terms induces pressure gradient
errors and drives spurious currents (in case of sharp topographic changes)

In s coordinates, the horizontal pressure gradient consists of two large terms that
tend to cancel

ANALYTICAL TEST CASE

BASIN cppdefs.h

See routines ana_grid.F,
ana_initial.F, analytical.F

Closed open boundaries condition

BASIN basin.in

BASIN param.h, ana_grid.F

From ana_grid.F :
ଷ ଷ

param.h

ana_grid.F

CFL ?

௕௧ 160 s

௕௧

croco.in

BASIN : Result visualizations

• Run plot_basin (matlab
script in TEST_CASES
directory)

Or

• Lunch ncview..

THANK YOU FOR YOUR ATTENTION

